Excitation spectrum of Mott shells in optical lattices
نویسندگان
چکیده
We theoretically study the excitation spectrum of confined macroscopic optical lattices in the Mott-insulating limit. For large systems, a fast numerical method is proposed to calculate the ground state filling and excitation energies. We introduce many-particle on-site energies capturing multi-band effects and discuss tunnelling on a perturbative level using an effectively restricted Hilbert space. Results for small one-dimensional lattices obtained by this method are in good agreement with the exact multi-band diagonalization of the Hamiltonian. Spectral properties associated with the formation of regions with constant filling, so-called Mott shells, are investigated and interfaces between the shells with strong particle fluctuations are characterized by gapless local excitations.
منابع مشابه
Rotating states for trapped bosons in an optical lattice
Rotational states for trapped bosons in an optical lattice are studied in the framework of the Hubbard model. Critical frequencies are calculated and the main parameter regimes are identified. Transitions are observed from edge superfluids to vortex lattices with Mott insulating cores, and subsequently to lattices of interstitial vortices. The former transition coincides with the Mott transitio...
متن کاملRaman Spectroscopy of Mott insulator states in optical lattices
We propose and analyse a Raman spectroscopy technique for probing the properties of quantum degenerate bosons in the ground band of an optical lattice. Our formalism describes excitations to higher vibrational bands and is valid for deep lattices where a tight-binding approach can be applied to the describe the initial state of the system. In sufficiently deep lattices, localized states in high...
متن کاملSpin gradient thermometry for ultracold atoms in optical lattices.
We demonstrate spin gradient thermometry, a new general method of measuring the temperature of ultracold atoms in optical lattices. We realize a mixture of spins separated by a magnetic field gradient. Measurement of the width of the transition layer between the two spin domains serves as a new method of thermometry which is observed to work over a broad range of lattice depths and temperatures...
متن کاملZoo of quantum phases and excitations of cold bosonic atoms in optical lattices.
Quantum phases and phase transitions of weakly to strongly interacting bosonic atoms in deep to shallow optical lattices are described by a single multiorbital mean-field approach in real space. For weakly interacting bosons in one dimension, the critical value of the superfluid to Mott insulator (MI) transition found is in excellent agreement with many-body treatments of the Bose-Hubbard model...
متن کاملResponse of Bose gases in time-dependent optical superlattices
The dynamic response of ultracold Bose gases in one-dimensional optical lattices and superlattices is investigated based on an exact numerical time evolution in the framework of the Bose-Hubbard model. The system is excited by a temporal amplitude modulation of the lattice potential, as it was already realized in experiment. For regular lattice potentials, the dynamic signatures of the superflu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009